Minggu, 21 Februari 2016

SHOCK ABSORBER

Shock absorber merupakan komponen penting suatu kendaraan yaitu dalam sistem suspensi, yang berguna untuk meredam gaya osilasi dari pegas. Shock absorbers berfungsi untuk memperlambat dan mengurangi besarnya getaran gerakan dengan mengubah energi kinetik dari gerakan suspensi menjadi energi panas yang dapat dihamburkan melalui cairan hidrolik.
gbr11
Gambar struktur dan fungsi shock absorber
Peredam kejut (shockabsorber) pada mobil memiliki komponen pada bagian atasnya terhubung dengan piston dan dipasangkan dengan rangka kendaraan. Bagian bawahnya, terpasang dengan silinder bagian bawah yang dipasangkan dengan as roda. Fluida kental menyebabkan gaya redaman yang bergantung pada kecepatan relatif dari kedua ujung unit tersebut. Hal ini membantu untuk mengendalikan guncangan pada roda.
Konstruksi shock absorber itu terdiri atas piston, piston rod dan tabung. Piston adalah kmponen dalam tabung shock absorber yang bergerak naik turun di saat shock absorber bekerja. Sedangkan tabung adalah tempat dari minyak shock absorber dan sekaligus ruang untuk piston bergerak naik turun. Dan yang terakhir adalah piston rod adalah batang yang menghubungkan piston dengan tabung bagian atas (tabung luar) dari shock absorber. Untuk lebih jelasnya dapat dilihat pada gambar berikut:
gbr21
Gambar detail struktur shock absorber
Shock absorbers bekerja dalam dua siklus yakni siklus kompresi dan siklus ekstensi.
Siklus kompresi (penekanan)
Saat shock absorber ditekan karena gaya osilasi dari pegas suspensi, maka gerakan yang terjadi adalah shock absorber mengalami pemendekan ukuran. Siklus kompresi terjadi ketika piston bergerak ke bawah, menekan fluida hidrolik di dalam ruang bawah piston. Dan minyak shock absorber yang berada dibawah piston akan naik keruang atas piston melalui lubang yang ada pada piston. Sementara lubang kecil (orifice) pada piston tertutup karena katup menutup saluran orifice tersebut. Penutupan katub ini disebabkan karena peletakan katup yang berupa membran (plat tipis) dipasangkan dibawah piston, sehingga ketika minyak shock absorber berusaha naik ke atas maka katup membran ini akan terdorong oleh shock absorber dan akilbatnya menutup saluran orifice. Jadi minyak shock absorber akan menuju ke atas melalui lubang yang besar pada piston, sementara minyak tidak bisa keluar melalui saluran oriface pada piston. Pada saat ini shock absorber tidak melakukan peredaman terhadap gaya osilasi dari pegas suspensi, karena minyak dapat naik ke ruang di atas piston dengan sangat mudah.
Siklus ekstensi (memanjang)
Pada saat memanjang piston di dalam tabung akan begerak dari bawah naik ke atas. Gerakan naik piston ini membuat minyak shock absorber yang sudah berada diatas menjadi tertekan. Minyak shock absorber ini akan mencari jalan keluar agar tidak tertekan oleh piston terus. Maka minyak ini akan mendorong katup pada saluran oriface untuk membuka dan minyak akan keluar atau turun ke bawah melalui saluran oriface. Pada saat ini katup pada lubang besar di piston akan tertutup karena letak katup ini yang berada di atas piston. Minyak shock absorber ini akan menekan katup lubang besar, piston ke bawah dan mengaakibat katup ini tertutup. Tapi letak katup saluran oriface membuka karena letaknya berada di bawah piston, sehingga ketika minyak shock menekan ke bawah katup ini membuka. Pada saat ini minyak shock absorber hanya dapat turun ke bawah melalui saluran orifice yang kecil. Karena salurannya yang kecil, maka minyak shock absorber tidak akan bisa cepat turun ke bawah alias terhambat. Di saat inilah shock absorber melakukan peredaman terhadap gaya osilasi pegas suspensi.
Tipikal mobil atau truk ringan akan memiliki lebih banyak perlawanan selama siklus ekstensi daripada siklus kompresi. Semua peredam kejut modern adalah kecepatan-sensitif – suspensi semakin cepat bergerak, semakin banyak perlawanan yang shock breker sediakan. Hal ini memungkinkan guncangan untuk menyesuaikan diri dengan kondisi jalan dan untuk mengontrol semua gerakan yang tidak diinginkan yang dapat terjadi dalam kendaraan yang bergerak.
Cara kerja dari shock absorber tersebut di atas merupakan shock absorber yang bertipe single action, sedangkan untuk shock absorber bertipe double action tidak menggunakan saluran besar pada piston, kedua-duanya hanya berupa saluran orifice saja. Sehingga saat kompresi, shock absorber akan melakukan peredaman terhadap gaya osilasi pegas suspensi.
Secara sederhana shock absorber merupakan pengaplikasian dari gerak osilasi harmonic yang teredam.

Getaran bebas dengan redaman

gbr31
Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)
gbr41
Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan
m \ddot{x} + { c } \dot{x} + {k } x = 0.gbr51
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
gbr61
Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (ζ) adalah
gbr71
Solusi sistem kurang redam pada model massa-pegas-peredam adalah
gbr81
Nilai X, amplitudo awal, dan φ, ingsutan fase, ditentukan oleh panjang regangan pegas.
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.
Frekuensi dalam hal ini disebut “frekuensi alamiah teredam”, fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
gbr91
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.

Tidak ada komentar :

Posting Komentar